Mostrando entradas con la etiqueta 3 Ibañez Perez Jesus Oswaldo. Mostrar todas las entradas
Mostrando entradas con la etiqueta 3 Ibañez Perez Jesus Oswaldo. Mostrar todas las entradas

domingo, 21 de marzo de 2010

Titanium Metals (NYSE:TIE): Investing in Aviation Growth

Titanium Metals (NYSE:TIE): Investing in Aviation Growth


By Chris Mayer

The economic center of gravity will not always reside in the United States. In fact, it's already in the process of shifting from the US to Asia and the Middle East. Forward-looking investors cannot afford to ignore this trend.One of my favorite ways to invest in the rapidly growing emerging markets is through the back door, so to speak. Invest in companies, wherever they are, that have what these economies need or want, but don't have. Airliner production is a classic example.I bet most Americans would be surprised to learn, for example, that the Middle East is a very important market for new jets. The Gulf's leading airlines – Emirates (out of Dubai), Etihad (out of Abu Dhabi) and Qatar Airways have become big reasons why Boeing and Airbus make any money. "The Middle East is still the hub of aviation growth," says Airbus CEO, Tom Enders.According to informed guesses, the Middle East will buy 1,400-1,700 planes over the next twenty years, at a cost of $240-300 billion. These planes will support passenger growth of nearly 5% annually over that timeframe. Many other developing nations around the globe are also becoming active buyers of passenger jets. Airbus just signed a $1.8 billion deal with Vietnam Airlines for four A380 super-jumbos and two A350s. Ethiopian Airlines recently put in an order for 12 A350s, at a cost of $3 billion. These are just two examples.The Asia-Pacific region, despite the impressive growth out of the Middle East, is still the largest buyer of aircraft. Over the next 20 years, for instance, the Asia-Pacific region will require close to 9,000 planes, at a cost of over $1 trillion.I've focused mostly on civil aviation. But there is also defense spending. In the Middle East, defense spending will probably rise to more than $100 billion by 2014, from only $36 billion now, according to a new study by consultancy Frost & Sullivan. That's why Lockheed Martin recently announced it would double its capacity to produce the C-130 Super Hercules – because of increased demand from the Middle East.Also, I can't end without saying a word about the world's urge to lower carbon emissions. The industry has pledged to cut its carbon emissions in half by 2050 – an effort that will require new planes with lighter material, different design and innovative engines.Despite all the good news on the aviation front, there is a fly in the soup that Boeing and Airbus will have to fish out before long: They are having a hard time making the planes on time. This is a rather fascinating subject on its own, given the history of aviation. In 1944, for example, Boeing used to crank out 16 B-17 bombers every 24 hours. Today, it's having a hard time producing one of its ballyhooed Dreamliners after more than two years of trying. Airbus has had its share of delays as well.Eventually, they'll sort it out. Eventually, they will build the new planes. There are lots of ways to play on these ideas as an investor, as these new planes ripple through the supply chain.My favorites are the titanium producers. Titanium is a lightweight metal. In fact, it has the highest strength-to-weight ratio of any metal, making it ideal for aircraft. The newer planes are titanium intensive, more so than in the past.Our play here is Titanium Metals (NYSE:TIE), the second-largest producer of titanium in the world. It has a solid financial position with lots of cash and no debt. It's stayed profitable, even through the slump. And Wall Street doesn't expect much from it, as analysts rate the stock as a poor performer. The potential upside when it comes makes it worth hanging onto. In TIE's heyday back in 2006, it was a $40 stock. Today, it's about $13. All cycles turn, remember. And this one will, too. The company only recently signed a new agreement with Boeing that will keep it as a key supplier through 2015.Titanium Metals has the potential to be a big winner once the aviation cycle gets in full swing again.

IBAÑEZ JESUS
EES

Stirring Liquid Metals Without A Stir Bar

Stirring Liquid Metals Without A Stir Bar

Heat and a magnetic field lead liquid lithium to swirl on its own, like a whirlpool

Liquid lithium whirls from the effects of heat and a magnetic field.Heat and a magnetic field can make a liquid metal stir itself, reports a group led by Michael A. Jaworski, now at the Department of Energy's Princeton Plasma Physics Laboratory, and David N. Ruzic of the University of Illinois, Urbana-Champaign (Phys. Rev. Lett. 2010, 104, 094503). The work is the first direct experimental evidence of a flow effect that was first proposed three decades ago. Jaworski and colleagues aimed an electron beam at a pool of liquid lithium in a stainless steel tray. The beam caused a temperature gradient that in turn created an electric current between the lithium and the tray. Applying a magnetic field to the current produced a force on the liquid and caused the lithium to flow in a circular fashion, like a whirlpool. When the researchers reversed the direction of the magnetic field, the flow of lithium also reversed direction. Inserting an insulating layer of quartz between the liquid and the stainless steel nullified the effect, and the lithium remained still. This self-stirring liquid phenomenon could be used in industry to stir metals or alloys, as well as in fusion reactors, the researchers say.
IBAÑEZ JESUS
EES

The Reactivity Series of Metals

The Reactivity Series of Metals

Metals Arranged in Order of their Ability to React

Share Article Feb 27, 2010 Simon Davies
Metals are very important substances in today's world. Gold, silver and alloys of copper form the basis of our currencies. Iron, and its alloy, steel, is used in the construction of buildings, cars and many other structures. Copper wires are still vital for our electrical installations, and many alloys (mixtures of metals) are used in the everyday gadgets taken for granted throughout the world.Increasing ReactivityWhen different metals are compared, however, it is obvious that they are not all the same. They are all defined as metals due to their structure and bonding, which distinguish them from non-metals, but they have greatly varying chemical properties. It is obvious to any car owner, for example, that iron rusts but gold does not.Sodium is also a metal, but when a small piece is placed in water, a violent reaction occurs. Gold seems almost completely unreactive. These differences are reflected in both the history of the use of metals and in the techniques used for their extraction.Different Methods of ExtractionThe least reactive metals, gold and silver, are found as metals in the earth's crust. It is possible to find small pieces of gold in certain types of rock. Other metals, because they are more reactive, are found in ores, combined in compounds with other elements, especially as oxides, combined with oxygen from the air.Some of these metals, including copper, zinc and iron, can be extracted easily, by mixing the ore with carbon from coal or coke and heating it in a blast furnace. This is because the metals are less reactive than carbon, so the oxygen in the ore prefers to combine with carbon than with the metal. This extraction method has been used for more than 2,000 years and the metals have been widely used throughout human history.Extraction by ElectrolysisThe more reactive metals hold on tighter to the oxygen, so their extraction has only developed since the 19th century. In the days of Napoleon III, emperor of France from 1848-1873, aluminium utensils were considered more precious than gold. Today these metals can be extracted by electrolysis of the melted ores.The ReactivityThe reactivity series of the metals, therefore, has potassium, sodium and lithium at the top. These metals react readily with both the air and water – potassium actually melts and catches fire when placed in water. Calcium and magnesium come next – they burn easily in air and react more slowly with cold water.Aluminium, zinc and iron are much less reactive. They have very slow reactions with air, but will burn if powdered or shredded into wool, and will react with steam. Copper reacts very slowly with air and has no reaction with pure water. Finally come silver and gold, which do not react with either air or water. Of course, copper and silver do seem to react with the air or rainwater (silver tarnishes and copper roofs turn green) but this is actually due to acidic constituents of the air and rainwater. Silver does not react with oxygen, copper does not react with pure water.References:The Reactivity Series, Dr Colin France, gcsescience.com, accessed on 28-02-10Chemistry for GCSE, Colin Johnson, Heinemann, UK, 1987.

IBAÑEZ JESUS
EES

New Plastic Conducts Heat Better Than Metals, But Only in One Direction

New Plastic Conducts Heat Better Than Metals, But Only in One Direction

Polyethylene Chains of polyethylene molecules like the one above tend to arrange themselves chaotically, but by figuring out how to make the molecules line up straight, MIT researchers have created a highly conductive new polymer that conducts heat in only one direction. Polymers are generally put to work as insulators, but a team of researchers at MIT has devised a way to turn polyethylene -- the most commonly used polymer -- into a conductor that transfers heat better than many pure metals. But the conversion of insulator to conductor is only half of the breakthrough; by coaxing all the polymer molecules into precise alignment, the researchers have created a polyethylene that conducts heat in only one direction. The plastic material remains an electrical insulator.Getting a bunch of polymer molecules to fall in line is no easy task -- left to their own devices, the molecules will settle into a chaotic arrangement that is resistant to heat transfer. But the MIT team found that by drawing polyethylene fibers slowly out of a solution they could get the molecules to line up facing the same way, creating a material that will let heat pass in one direction but not the other.This kind of one-way conductor is ripe for myriad applications in devices where heat must be drawn away from a certain place, such as heat exchangers, computer processors or portable electronics. With a thermal conductivity 300 times greater than conventional polyethylene, the polymer is actually more conductive than about half of all pure metals, meaning it could potentially replace metal conductors in several common devices. Of course, all that is dependent on scaling the process to create conductive polyethylene at market-feasible prices and quantities, something the team has not yet done. But should they find a way to produce the stuff in bulk, it could quickly jump from lab bench to commercial applications, providing a cheap alternative to certain metals used in heat exchange -- metals that add cost and sometimes an environmental toll to common devices.


IBAÑEZ JESUS
EES

MOLDEO POR INYECCIÓN DE METALES. ESTADO ACTUAL.

MOLDEO POR INYECCIÓN DE METALES. ESTADO ACTUAL.

1. Introducción.
El moldeo por inyección de polvos, PIM (Powder Injection Moulding) y su variante aplicada a los metales (MIM, "Metal Injection Moulding") constituye una tecnología de conformado de materiales desarrollada en los años veinte y que ha experimentado un gran avance, fundamentalmente, en los últimos quince años (German 1990, Vervoort1996, Gummerson 1989, Alcock 1996, Maryn 1988, German 1997 A, Laag 1989). Se fabrican, vía MIM, componentes para la industria médica, militar, aeroespacial, telecomunicaciones, automoción, etc., con formas complejas, de propiedades mecánicas elevadas y con forma casi final. Se estima que el crecimiento anual de esta tecnología es superior al 50% (German 1991).El moldeo por inyección se utiliza de forma general para la producción de piezas de plástico, pero para conseguir piezas de materiales metálicos o cerámicos es necesario obtener previamente mezclas de estos polvos con polímeros, normalmente, termoplásticos y posteriormente pasar a la etapa de inyección como si se tratara de un plástico. Tras el proceso de obtención de la pieza se procede a la eliminación del ligante polimérico y posteriormente a la sinterización.
2. Descripción del proceso.Para la obtención de piezas por moldeo por inyección de polvos se tienen que seguir las etapas (German 1991, German 1997 B, Mutsuddy 1995, Merhar 1990) que se muestran en la Figura 1: selección del polvo y ligante polimérico, mezcla homogénea del polvo con el ligante, granulado de la mezcla, conformado por inyección en un molde, eliminación del ligante, y sinterización. Posteriormente las piezas obtenidas pueden ser sometidas a operaciones secundarias de acabado.
Figura 1. Esquema general del proceso de moldeo por inyección de polvos
En pulvimetalurgia convencional (P/M) se denomina compacto en verde a la pieza tras la etapa de compactación, mientras que en el proceso MIM, al existir una etapa intermedia de eliminación del ligante, la terminología utilizada es la de compacto en verde para las piezas tras la inyección y compacto en marrón para la piezas tras la eliminación del ligante (debido al color característico que adquieren las piezas después de esta etapa).2.1. Polvos.En lo que se refiere a los polvos de partida hay que tener en cuenta una serie de consideraciones generales (Vervoort 1996, Alcock 1996, German 1991, Merhar 1990, Japka 1991). El moldeo por inyección requiere las siguientes características y propiedades del polvo:•Pequeño tamaño de partícula, normalmente inferiores a 20 µ m.•En principio, una distribución de tamaños de partícula amplia para conseguir un mayor empaquetamiento, pese a dificultar la eliminación del ligante.•No deben aglomerarse.•Ser esféricos.•Deben tener una determinada fricción entre partículas para mantener la forma una vez eliminado el ligante.•Las partículas de polvo no deben contener poros y han de tener una superficie limpia para lograr una buena interacción con el ligante.•No deben ser tóxicos ni pirofóricos.•Bajo coste.• Los polvos para moldeo por inyección son principalmente atomizados en gas, aunque también los hay atomizados en agua. En ambos casos el tamaño de partícula deseado se obtiene por cribado (Nyborg 1998 A, Nyborg 1998 B).La clase más utilizada de materiales para MIM por atomización la constituyen los aceros inoxidables. Este grupo incluye los austeníticos (316L principalmente), así como los ferríticos (13 Cr), los aceros endurecibles por precipitación (17-4 PH) y los resistentes al desgaste.2.2. Ligantes.El ligante es el componente sacrificado en el moldeo por inyección, aunque es crítico tanto a la hora del moldeo como de su eliminación. Es el medio utilizado para mantener las partículas unidas con el fin de obtener la forma deseada. Por ello el ligante no debe condicionar la composición de la pieza final, excepto si se desea que los productos residuales de su eliminación sirvan de aleantes (Várez 2000, Levenfeld 2001). La selección previa se realiza no sólo por su viscosidad, contracción en el enfriamiento, compatibilidad interfacial, sino también por la posible contaminación que pueda sufrir el material final durante el proceso (Sumitomo Ltd 1988).
Tabla 1. Componentes en los ligantes.

En la bibliografía aparecen multitud de sistemas ligantes a base polímeros termoplásticos para su utilización en moldeo por inyección de polvos, pero apenas existe bibliografía en la que se hayan utilizado resinas de polímeros termoestables, debido principalmente a la dificultad que presentan estas para el reciclado de piezas defectuosas. Únicamente aparecen cuando el entrecruzamiento del polímero se realiza en una etapa posterior al proceso de inyección (Parker 1998, Walter 1996, Hahn 1996, Hens 1997) o el conformado se realiza por un proceso alternativo a la inyección (Ridgway 1998). La mayoría de los ligantes usados son multicomponentes (Bandyopadhyay 1993, Moller1994, Petzolddt 2000, Trunec 2002, Yimin 1999) ya que es más fácil la eliminación escalonada de ellos. La cantidad de ligante (German 1990, Ruiz-Román 1994, Reddy 1996, Saritas 1998) varía entre el 15 y el 50 % en volumen dependiendo de las características del polvo de partida (tamaño, forma y distribución de partículas) y del tipo de ligante. Normalmente la carga crítica se determina obteniendo la gráfica que se presenta en la Figura 2. La cantidad óptima de polvo varía entre un 2-5% por debajo de la carga crítica (German1997 B, Lograsso 1989).

Figura 2. Densidad frente a fracción de polvo.
2.3. Proceso de mezclaLa obtención de piezas con buenas propiedades requiere comenzar con una mezcla ligante-polvo homogénea. La etapa de mezclado ha sido una práctica poco considerada y recientemente está empezando a ser optimizada. Un tamaño de la granza inadecuado, o una gran cantidad de finos, puede dificultar el proceso de inyección (German 1993).
La medida del esfuerzo cortante, por reología, puede aportar idea de la carga de polvo crítica, así como de la viscosidad en función de la temperatura de la mezcla (Weinand 1998, Nyborg 2000).
Es importante que el polvo y el polímero sean diseñados para producir poco desgaste. Para ello se requieren ligantes con una viscosidad lo suficientemente grande para evitar que se produzca una separación del polvo durante el proceso de moldeo debido a las altas velocidades de deformación que se producen (German 1993).
2.4. Moldeo.
La inyección de las mezclas ligante-polvo puede realizarse a baja y alta presión (Odriozola 1994). En el primer caso se utilizan masas de inyección de gran fluidez a temperaturas inferiores a 100ºC. La mezcla del material en polvo con el sistema ligante se prepara y almacena en la propia máquina. Dicha mezcla se transporta e inyecta a baja presión en el molde donde se solidifica por enfriamiento. Este sistema ofrece la ventaja de la facilidad de preparación de la mezcla y de utilización de masas fluidas fáciles de transportar, sin apenas rozamiento con las paredes de la máquina y del molde. Sin embargo presenta la desventaja de la tendencia a la segregación de los componentes metálicos de los orgánicos, lo cual puede producir distorsiones y deformaciones en las piezas moldeadas en las etapas sucesivas de eliminación y sinterización.Las máquinas con inyección de alta presión trabajan con masas viscosas que impiden dicha segregación, pero que para su introducción en el molde requieren altas presiones (del orden de 100 veces las de baja presión). La consistencia viscosa de la mezcla da lugar a composiciones homogéneas dentro de cada pieza y de una pieza a otra (reproducibilidad). Por otro lado, para poder conseguirlo se requieren máquinas más complicadas (mayor presión), construidas con materiales antidesgaste, costosos y difíciles de mecanizar.Las máquinas de inyección de husillo utilizadas para plásticos pueden emplearse para inyectar metales y cerámicos, siempre que el cilindro y el husillo sean de materiales duros o recubiertos de capas de material duro, capaces de soportar el efecto abrasivo de las partículas que contiene la mezcla. Otra tipo de máquina de inyección a alta presión es de tipo pistón. La masa a inyectar se desplaza mediante un pistón sin los problemas de abrasión que se presentan en el rozamiento con el husillo. Sin embargo, las diferencias de temperatura en la masa y las bolsas de aire que originan defectos en la inyección son debidas al tipo pistón, al no forzarse como en los de tipo husillo el movimiento transversal de la mezcla a lo largo del cilindro de la máquina.2.5. Eliminación del liganteUna vez extraída la pieza moldeada, y eliminados los canales de alimentación, el ligante debe ser eliminado del compacto. Esta es la operación más delicada de todo el proceso.Son varios los procesos descritos en la bibliografía para conseguir la eliminación del ligante: algunos se utilizan por si solos y otros unen varios de los procesos para conseguir una mejor eliminación. Es la etapa más crítica del proceso porque es donde más defectos se pueden producir en el procesado de las muestras. A continuación se describe de forma resumida los principales métodos de eliminación de ligantes.2.5.1. Degradación térmica.Constituye el principal método para la eliminación de los ligantes. La degradación térmica pasa por tres estados básicos (Barone 1990). Durante los primeros estados del calentamiento se produce una expansión térmica del líquido del ligante inducido por la presión hidráulica. Cuando la temperatura aumenta el ligante se va eliminando por efecto de la evaporación desde las superficies. Cuando el nivel de saturación del ligante se ha reducido lo suficiente el líquido remanente en la mezcla asciende hacía la superficie por capilaridad, donde puede evaporarse. El ligante eliminado deja una red de poros interconectados por donde puede continuar la salida del polímero que queda en el interior del compacto, y a su vez puede entrar el gas del exterior. Si la eliminación se produce en atmósfera de aire, las reacciones pueden producirse a través de estos canales (Angermann 1993, Yoon 1993).

Figura 3. Proceso de eliminación térmica del ligante.
Con la eliminación del ligante se pueden producir dos situaciones diferentes: que la eliminación se produzca en la superficie o interfase entre el ligante y la atmósfera, o bien que se produzca en todo el volumen del material. Si ocurre la primera situación va eliminándose progresivamente el ligante por la reacción con la atmósfera. Si por el contrario domina la segunda situación, lo que puede ocurrir es que se produzca la delaminación y formación de fisuras en el interior de las piezas (Hwang 1996 B, Rodrigues 1998). La eliminación térmica puede ayudarse de sistemas con baja presión, es decir sistemas con una bomba de vacío usada para ayudar a evacuar el gas generado de los compactos. La sublimación por vacío de los ligantes está limitada a sistemas con moléculas pequeñas (Hwang 1997), como agua o anilina. La ventaja principal es que normalmente se elimina el ligante mientras se sube hasta la temperatura de sinterización con lo que no es necesario enfriarlos y manipularlos hasta que se termina la sinterización. Las desventajas son que es un proceso relativamente lento, el equipamiento es caro, y puede ocurrir que el polímero funda a temperaturas inferiores a las de reacción de los componentes y pudiendo producirse distorsiones de las piezas (German 1997 A).2.5.2. "Wick debinding" o extracción capilar.Este término se usa cuando la eliminación del ligante polimérico se ayuda de un efecto de capilaridad. Este método se basa en la colocación de las piezas, a las que se les quiere eliminar el ligante, recubiertas de una capa de polvo fino, que no sea reactivo, normalmente alúmina, que extrae el ligante una vez el compacto se ha calentado y el polímero esta líquido. 2.5.3. Extracción con disolventes.La extracción por inmersión en disolventes, por exposición a vapores disolventes o a disolventes condensados (Lin 1989), requiere que alguno de los componentes del ligante sea insoluble en el disolvente y que no se produzca hinchamiento de este.2.5.4. Eliminación supercrítica. Los ligantes basados en ceras pueden ser eliminados supercríticamente. El método consiste en utilizar un fluido por encima del punto crítico. 2.5.5. Eliminación catalítica. Es una combinación de los procesos de eliminación térmica y eliminación con disolventes (Hesse 1996). La reacción depende de la entrada a través de los poros de un vapor que cataliza la reacción (Weinand 1993), y la salida a través de los poros de los productos de la descomposición.

Figura 4. Horno para eliminación catalítica.
2.5.6. Eliminación por plasma.controles Recientemente se ha patentado a nivel mundial un nuevo tipo de eliminación de ligante: "la eliminación por plasma" (Klein 2000). Se realiza a través de un proceso termoquímico en un reactor de plasma (Wenndhausen 2001), usando una descarga eléctrica en un ambiente gaseoso a baja presión, que contiene hidrógeno u otro gas atómico o molecular capaz de producir especies reactivas, lo que aumenta significativamente la cinética de eliminación del ligante. En el caso de usar mezclas de gas con hidrógeno como gas principal, las especies reactivas están constituidas por hidrógeno atómico e hidrógeno molecular con un estado de alta energía potencial.2.6. Sinterización Normalmente, esta es la última etapa del proceso de moldeo por inyección en la cual la pieza adquiere su máxima densidad. La sinterización permite el enlace de las partículas cuando estas se activan por los procesos de difusión a alta temperatura. A escala microscópica este enlace ocurre por formación de cuellos cohesivos en la zona de contacto entre partículas, que van creciendo.En la Figura 5 se muestra la evolución de las uniones entre partículas y de la porosidad, considerando el modelo de partículas esféricas. En un proceso de pulvimetalurgia convencional (P/M) la densidad en verde de los compactos esta próxima al 70% de la densidad teórica, mientras que después de la sinterización se puede alcanzar el 90-92% de la densidad teórica. En algunos procesos, como el PIM, tras el último estado de sinterización es posible obtener densidades superiores al 98% de la densidad teórica. Este hecho es significantemente favorable para los procesos PIM, y más si consideramos que se está partiendo de compactos con densidades del 50% de la teórica.

Figura 5. Diagrama esquemático del cambio de la estructura de poros durante la sinterización (German 1994).

Figura 6. Mecanismos de transporte de masa (Bose 1995).1. Difusión superficial, 2. Fluencia plástica, 3. Difusión en volumen, 4. Difusión a través del límite de partícula / borde de grano, 5. Evaporación y condensación, 6. Difusión adhesión.
Donde D es el coeficiente de difusión, D0 es el factor de frecuencia dependiente del material, Q es la energía de activación, k la constante de Boltzman, y T la temperatura absoluta. En el caso del MIM, la difusión superficial adquiere una especial relevancia debido a la alta porosidad inicial, junto con el pequeño tamaño de partícula utilizado. De todos los mecanismos de transporte de masa, la fluencia plástica quizás sea el menos importante en el caso del MIM, debido a la nula compactación anterior a la sinterización, lo que quiere decir que las tensiones superficiales durante la sinterización son insuficientes para generar nuevas dislocaciones que causen la fluencia plástica.

IBAÑEZ JESUS
EES

In vitro rodent models as alternative methods in assessing cytotoxicity and carcinogenic potential of metal compounds

In vitro rodent models as alternative methods in assessing cytotoxicity and carcinogenic potential of metal compounds

Autores: Francesca Mazzotti Directores de la Tesis: Enrico Sabbioni Lectura: En la Universitat Autònoma de Barcelona ( España ) en 2004
Resumen: In vitro morphological cell transformation tests encompass the multi-step process from neoplastic conversion to the established tumorigenic phenotype. In the present PhD thesis the in vitro Balb/3T3 assay, an immortalised mouse fibroblast cell line, was applied for assessing cytotoxicity and carcinogenic potential of selected metal compounds of environmental, occupational and biomedical interest by adopting a specific multi-stage work strategy. This has involved a very accurate protocol optimisation in order to assess intralaboratory reproducibility of the test protocol and to assure stability of the experimental conditions in which the Balb/3T3 assay was applied.Therefore, after optimisation of the adopted protocol the present PhD project was carried out following a four steps approach: a) determination of cytotoxicity at a fixed concentration exposure (100 µM, 65 individual metal compounds). This allowed the selection of metal compounds to which priority is given for subsequent investigations; b) setting of dose-effect relationships for 35 metal compounds identified as first priority in step (a), in order to establish the corresponding IC50 values and a suitable exposure range of concentrations to be used in the subsequent steps; c) determination of carcinogenic potential of selected metal compounds from step (b); d) mechanistic studies on transforming metal species as identified in step (c). In this context, an initial mechanistic approach was the evaluation of the apoptotic response induced by selected metal compounds on the Balb/3T3 cells. This study on apoptosis has shown that more than one assay should be used in order to establish unequivocally the induction of apoptosis by a metal compound on the selected test system. This is due to the complexity of the problem and the difficulties to interpret the experimental data. Moreover, the findings on the apoptotic response induced by As(III), Cr(VI) and some Pt-compounds suggest the hypothesis of an existing relationship among apoptotic, genotoxic and carcinogenic processes.With regard to mechanistic studies and metal metabolism, the results obtained applying unique and peculiar analytical techniques like the use of radiotracers, Inductively Coupled Plasma-Mass Spectrometry and Nuclear Magnetic Resonance have made possible to get interesting metabolic data on uptake and intracellular repartition of metals incorporated into cells. This is an aspect generally neglected in in vitro studies although it is a key point for mechanistic interpretation of cytotoxicity and transforming activity induced by chemicals.In addition, a good level of concordance was achieved by comparing the results obtained from the application of the Balb/3T3 assay with selected in vitro rodent and human models.In conclusion, the present PhD project represents an important contribution to make the Balb/3T3 cell line as a valuable in vitro model to investigate correlation between uptake, biotransformation, cytotoxicity and carcinogenic potential of metal compounds. It is to state that the Balb/3T3 assay has the potential to be suitable for a future validation study.

IBAÑEZ JESUS
EES

Distribución espacial y tendencias temporales de los niveles de metales traza en el litoralde Andalucía utilizando mejillón Mytilus galloprovincialis

Distribución espacial y tendencias temporales de los niveles de metales traza en el litoralde Andalucía utilizando mejillón Mytilus galloprovincialis



RESUMENEste trabajo presenta la distribución espacial y tendencias temporales de las concentraciones de mercurio, cadmio, plomo, cobre y cinc en mejillones silvestres Mytilus galloprovincialis Lamarck,1819 (talla 3-4 cm) de la costa de Andalucía, durante el periodo 1991-2003. Las tendencias tem- porales se obtuvieron aplicando el test de una cola de Mann-Kendall a las medianas de las con- centraciones obtenidas en cada localidad y año. Los resultados más destacables son el alto porcentaje de tendencias temporales no significativas (84,61 %) y el predominio de las disminu- ciones significativas (15,38 %) frente a los aumentos (0 %). Las concentraciones de Hg, Cu y Pb tienden a disminuir, siendo el mercurio el que mejor refleja esta tendencia. Los niveles de me- tales se encuentran dentro de los rangos obtenidos en otros estudios desarrollados en zonas del Mediterráneo y del litoral atlántico de la península Ibérica y Francia.Palabras clave: Tendencias temporales, contaminación marina, metales pesados, Mytilus gallo- provincialis, bioindicadores, Mann-Kendall, calidad de las aguas costeras.INTRODUCCIÓN
En los últimos años se ha generalizado el uso de organismos para evaluar los niveles de contamina- ción en el medio marino. Desde que Goldberg pro- pusiera el uso del mejillón como bioindicador (Goldberg et al., 1978; Goldberg, 1986), el concep- to Mussel Watch, o Vigilancia con mejillón, ha sido aplicado a escala nacional e internacional. En Estados Unidos lo aplica la Administración Nacional Oceánica y Atmosférica (NOAA), a través de su Programa de situación nacional y tendencias (O'Connors, 1992, 1994, 1996; O'Connors y Beliaeff, 1995; Cantillo, 1998). En Francia, el Instituto de Investigación para la Explotación del Mar (Ifremer), a través de la Red Nacional de Observación de la Calidad del Medio Marino (RNO) (Claisse, 1989; Claisse, Joanny y Quintin,1992 ; RNO, 1991, 2000) y la Red de IntegradoresBiológicos (Rinbio) (Andral, Stanisière y Mercier,2001). A escala internacional se aplicó, en 1991-1992, en América central y América del sur, por la Comisión Oceanográfica Internacional (Tripp et al., 1992), y en las costas del océano Pacífico de di- ferentes países asiáticos (Monirith et al., 2003). En la península Ibérica, el concepto Vigilancia con mejillón está siendo aplicado por el Instituto Español de Oceanografía desde 1990. La costa me- diterránea ha sido estudiada por el Centro Oceanográfico de Murcia (Rodríguez et al., 1995,1996; Benedicto et al., 2001; MMA, 2001), y la costa noratlántica, por el Centro Oceanográfico de Vigo (Besada, Fumega y Vaamonde, 2002; MMA, 2001). En la costa vasca lo aplica la Universidad del País Vasco (Soto et al., 2001) y en la costa portuguesa la Universidad del Algarve (Machado et al., 1999). El objetivo principal de la Red de Mejillón ope- rativa en el Centro Oceanográfico de Murcia, cuyos datos se presentan en este trabajo, es proporcionar a la Administración un sistema adecuado para eva- luar el estado actual y las tendencias de la calidad química de las aguas costeras del Mediterráneo peninsular. ejemplo, los muestreos se realizan anualmente, en la época de prepuesta (mayo-junio), manteniendo las mismas condiciones de muestreo. Las poblaciones naturales de mejillón muestrea- das aparecen en la figura 1. En cada punto se to- man 4 muestras compuestas por 50 mejillones (3-4 cm). Una vez eliminadas las adherencias y lavados con agua de la zona, se almacenan adecuadamente y se envían refrigerados al Centro Oceanográfico de Murcia. Para cada población se determina el índice de condición [(peso de carne/peso de las valvas) × 100] utilizando 10 mejillones de talla 4,0 cm. El ín- dice de condición de la población considerada es la media de los valores obtenidos.Los ejemplares de las tres muestras destinadas a análisis químico son abiertos y drenados en una ca- bina de flujo laminar, separándose las partes blan- das para su liofilización, molturación y homogenei- zación, hasta conseguir una harina de mejillón. La mineralización de las muestras se realiza en un hor- no microondas (MDS 2000 650W, CEM), atacando con ácido nítrico y utilizando reactores a presión. Los análisis cuantitativos se realizan con un espec- trofotómetro de absorción atómica de llama (Analyst-100, Perkin Elmer) para cinc y cobre; con cámara de grafito (4110-ZL, Perkin Elmer) para cadmio y plomo, y un sistema de análisis por inyec- ción de flujo (FIMS, Perkin Elmer) para mercurio. La metodología aplicada rutinariamente es la ex- puesta por Rodríguez et al. (1995). Los resultados analíticos han sido contrastados mediante la utiliza- ción de materiales de referencia certificados (BCR- CRM 278) y la participación en ejercicios de inter- calibración dentro del programa Quasimeme. La tabla I muestra los valores de z obtenidos en los ejercicios de intercalibración cuando la matriz utilizada fue mejillón.

Tabla I. Valores de "z" obtenidos por el Centro Oceanográfico de Murcia en los ejercicios de intercalibra- ción de metales en mejillón realizados en el marco del programa Quasimeme.




Figura 1. Localización de las estaciones de muestreo de mejillón en el litoral de Andalucía.



Para determinar las tendencias temporales de las concentraciones de metales se aplicó el test no pa- ramétrico de Mann-Kendall (Hollander y Wolf,1999), calculándose el coeficiente de correlación t-b de Kendall utilizando la mediana de los valores obtenidos anualmente de las tres muestras de cada estación. El uso de este método está recomendado por el grupo de trabajo del Consejo Internacional para la Exploración del Mar sobre Aspectos esta- dísticos del seguimiento del medio (ICES, 1996).RESULTADOSLas medianas anuales de las concentraciones de metales (mg/kg, peso húmedo) para cada estación, se presentan en la tabla II. Durante el periodo con- siderado, los niveles de Hg estuvieron dentro del rango 0,009-0,343, con un mínimo en La Herradura (1996) y un máximo en Almuñécar (1992). Para el Cd, las concentraciones estuvieron dentro del rango 0,042-0,238, con un mínimo en Algeciras 2 (2000) y un máximo en Calahonda (1998). Para el Pb, el rango fue de 0,127-2,096, con un mínimo en La Herradura (1995) y un máximo en Almería (1997). En el caso del Cu, el rango fue de 0,63-2,370, con un mínimo en La Herradura (1996) y un máximo en Málaga 2 (1992). Por último, el rango para el Zn fue de 18,3-70,8, con un mínimo en Motril (1994) y un máximo en Algeciras 1 (1996). En la tabla III se pre- sentan los valores medios, máximos y mínimos de las concentraciones de metales obtenidas en estudios si- milares desarrollados en las costas de España, Francia y Portugal, durante la década de los ochen- ta y noventa. En el estudio realizado por Besada, Fumega y Vaamonde (2002) las concentraciones es- tán expresadas como medianas. Para unificar unida- des, las concentraciones originales, expresadas en peso seco, se transformaron en peso húmedo divi- diéndolas entre cinco. La tabla III incluye, entre pa- réntesis, las concentraciones basales de referencia o background (BCRs), establecidas por la Convención de Oslo y París, para áreas del Atlántico norte con ausencia de actividades humanas (Ospar, 2000).Para evaluar la distribución espacial de las con- centraciones de metales se utilizan diagramas de cajas (figura 2), sin considerar los valores atípicos y extremos. Los diagramas permiten distinguir los siguientes patrones de distribución espacial. En el caso del Zn, se observa una distribución creciente, en el sentido nordeste-suroeste, mientras que para el Pb y Cd sus niveles crecen en el sentido suroeste- nordeste. El comportamiento del Pb y Cd también se observa, aunque en menor grado, en los niveles de Hg, si exceptuamos la estación localizada en Algeciras 2 en donde los niveles obtenidos son más altos que en el resto del litoral. Para el Cu, el pa- trón de distribución espacial es heterogéneamente uniforme y no se observa a priori un patrón predecible.
Tabla II. Medianas (mg/kg de peso fresco) de las concentraciones de metales en mejillones (talla 3-4 cm), de la costa de Andalucía, durante el periodo 1991–2003.


Tabla III. Concentraciones medias, máximas y mínimas de metales pesados en Mytilus galloprovincialis de diferentes áreas del Mediterráneo y del Atlántico (expresadas en mg/kg de peso húmedo); (*): valores ajustados para un índice de condi- ción de 0,124; (**): concentraciones expresadas como medianas.

El estudio de las tendencias temporales se ha rea- lizado aplicando el test no paramétrico de una cola de Mann-Kendall. El coeficiente de correlación τ-b de Kendall (Hollander y Wolf, 1999) proporciona una medida de la asociación entre la mediana de los diferentes metales y la variable temporal, depen- diendo de su signo la dirección de la tendencia ob- servada. El nivel de significación (p-valor), calculado para esta asociación, muestra si estas tendencias son estadísticamente significativas. En la tabla IV se pre- sentan los resultados de las tendencias temporales obtenidas considerando dos niveles de significación (p ≤ 0,01 y p ≤ 0,05). Los resultados más destacables son el alto porcentaje de tendencias temporales no significativas (84,61 %) y el predominio de las dismi- nuciones significativas (15,38 %) frente a los aumen- tos (0 %). El mercurio es el metal que presenta una tendencia más acusada al disminuir sus concentraciones durante el periodo considerado. De las 13 es- taciones estudiadas, 11 muestran tendencia a dismi- nuir, aunque solo en cuatro de ellas (Algeciras 2, San Diego, Calahonda y Algeciras 1) son estadísticamen- te significativas. Las concentraciones de cadmio dis- minuyen significativamente en Motril, Almuñécar y Algeciras 2; las de plomo en Almuñécar; las de cobre en Fuengirola y las de cinc en San Diego.




Figura 2. Diagramas de cajas de las concentraciones de metales en mejillón (talla 3-4 cm) del litoral de Andalucía durante el periodo 1991-2003, sin considerar los valores extremos y atípicos

Tabla IV. Coeficiente de correlación de τ-b Kendall (test de una cola) para los metales y lugares de estudio; (D): tendencia decreciente no significativa; (I): tendencia creciente no significativa; (D**): significativa a un nivel de 0,01; (D*): significa- tiva a un nivel de 0,05; (c): años consecutivos; (n.c.): años no consecutivos.
ISCUSIÓN Y CONCLUSIONES
Los resultados obtenidos en este estudio muestran que las concentraciones medias de los cinco metales, analizados durante el periodo 1991-2003, se encuen- tran dentro de los rangos obtenidos en otros estudios similares desarrollados en zonas del Mediterráneo occidental y el Atlántico norte franco-español, y por encima de los valores basales establecidos por Ospar. Destaca el hecho de que los niveles de Zn del litoral andaluz sean más altos que los del resto del Mediterráneo ibérico (desde el cabo de Creus al ca- bo de Palos) y francés, y más bajos que los de la cos- ta portuguesa del Algarve. Este hecho puede deber- se a una mayor biodisponibilidad natural de este metal en la costa surmediterránea a causa de la in- fluencia de las aguas atlánticas (Elbaz-Polulichet et al., 2001) y debe ser tenido en cuenta al establecer sus niveles basales. Lo anteriormente expuesto está de acuerdo con el patrón de distribución de concen- traciones crecientes de Zn en el litoral de Andalucía, en el sentido noreste-suroeste, aportado en este estu- dio. Las concentraciones más altas de Hg en Algeciras 2-playa de Guadarranque, Motril y Almería, y de Pb en Málaga 2 y Almería, pueden explicarse por la proximidad de fuentes contaminantes. La es- tación Algeciras 2-playa de Guadarranque está situa- da en la zona interior de la bahía y próxima al polo industrial, mientras que en las estaciones de Almería, Málaga 2 y Motril están situadas en zonas portuarias.Si consideramos de manera global los resultados de las tendencias temporales de metales en el lito- ral de Andalucía, se puede concluir que las con- centraciones de Hg y Cu, y en menor medida, las de Pb, han ido disminuyendo desde 1991, siendo el Hg el metal que mejor refleja esta tendencia. Los metales Cd y Zn sólo mostraron tendencias decre- cientes significativas en una localidad y un número similar de tendencias crecientes y decrecientes no significativas. La tendencia decreciente de Pb, Cu y Zn es similar a la obtenida en los estudios realiza- dos en la costa mediterránea y en la atlántica fran- cesa (RNO, 2000) y noratlántica española (Besada, Fumega y Vaamonde, 2002). La tendencia decre- ciente del Hg también se ha observado en las costas mediterráneas española y francesa y en la nora- tlántica española, mientras que en la costa atlántica francesa los decrementos significativos superan a los incrementos. En el caso del Cd, la tendencia en las zonas evaluadas es variable, predominando los decrementos en el Mediterráneo francés y los in- crementos en el litoral noratlántico ibérico.Las tendencias decrecientes observadas pueden ser el reflejo de los esfuerzos realizados en los últi- mos años para reducir las emisiones de contami- nantes de naturaleza metálica, tanto de proceden- cia atmosférica como las derivadas de la depuración de aguas industriales y urbanas.

IBAÑEZ JESUS
EES
FUENTE: http://www.ieo.es/publicaciones/boletin/pdfs/bol19/19%20(1-4)%20031-039.pdf

Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES)

Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES)

By Erol Pehlivana*, Gulsin Arslanb, Fethiye Godec, Turkan Altuna and M. Musa Özcand

RESUMEN
Determinación de algunos metales inorgánicos en aceites vegetales comestibles mediante espectroscopía de emisión atómicacon fuente de plasma acoplado inductivamente (ICP-AES).
En este estudio se analizó espectrométricamente el con- tenido en metales (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn) de 17 aceites vegetales comestibles mediante ICP-AES. Las concentaciones más elevadas se encontraron para el cobre en el aceite de almendra (0.0850 mg/kg), para el hierro en el aceite de maiz(c),(0.0352 mg/kg), para el manganeso en el aceite de soja (0.0220 mg/kg), para el cobalto en el acei- te de girasol (b) (0.0040 mg/kg), para el cromo en el aceite de almendra (0.0010 mg/kg), para el plomo en el aceite de oliva virgen (0.0074 mg/kg), para el cadmio en el aceite de girasol (e) (0.0045 mg/kg), para el niquel en el aceite de almendra (0.0254 mg/kg) y para el zincen el acei- te de almendra (0.2870 mg/kg). Los metales se extrajeron a partir de bajas cantidades de aceite (2-3 g), con una solu- ción de ácido nítrico al 10%. Se discute el método y se concl- luye que el método propuesto es simple y permite la deter- minación en aceites vegetales comestibles con una precisión estimada inferior al 10% para Cu, 5% para Fe, 15% para Mn. 8% para Co, 20% para Pb, 5% para Cd, 16% para Ni y 11% para Zn.

PALABRAS CLAVE: Aceite comestible – Aceite vegetal – ICP-AES – Metales tóxicos.

SUMMARY
Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES).Seventeen edible vegetable oils were analyzed spectrometrically for their metal (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn) contents. Toxic metals in edible vegetable oils were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The highest metal concentrations were measured as 0.0850, 0.0352, 0.0220, 0.0040, 0.0010, 0.0074, 0.0045, 0.0254 and 0.2870 mg/kg for copper in almond oil, for iron in corn oil-(c), for manganese in soybean oil, for cobalt in sunflower oil-(b) and almond oil, for chromium in almond oil, for lead in virgin olive oil, for cadmium in sunflower oil-(e), for nickel almond oil and for zinc in almond oil respectively. The method for determining toxic metals in edible vegetable oils by using ICP-AES is discussed. The metals were extracted from low quantities of oil (2-3 g) with a 10% nitric acid solution. The extracted metal in acid solution can be injected into the ICP- AES. The proposed method is simple and allows the metals to be determined in edible vegetable oils with a precision estimated below 10% relative standard deviation (RSD) for Cu, 5% for Fe, 15% for Mn, 8% for Co, 10% for Cr, 20% for Pb, 5% for Cd, 16% for Ni and 11% for Zn.

KEY-WORDS: Edible oil – ICP-AES – Vegetable oils – Toxic metals.

1. INTRODUCTION
Vegetable oils are widely used in the cooking and food processing, cosmetics, pharmaceutical and chemical industries (Dugo et al., 2004). Plants and animals depend on some metals as micronutrients. Metal elements such as Na, K, Ca, Mg, Fe, Cu, Zn and Mn, are essential nutrients for human growth. However, certain forms of some metals can also be toxic, even in relatively small amounts, and therefore pose a risk to the health of animals and people. Metal elements such as Cd, Pb, Cd, Co, and Cu, could also have detrimental effects on health. While the effects of chronic exposure to trace amounts of some metals are not well understood, many incidents tells us about the seriousness of high levels of exposure to some toxic metals, especially cadmium, chromium, cobalt, nickel and lead (Buldini, Ferri, & Sharma, 1997; Demirbas, 2001; Garrido et al., 1994).
The harmful effects induced by toxic metal only occur when they are overdosed. In general, a hazardous metal is defined as a metal which could induce adverse symptoms in the human body when consumed even in trace amounts. There is currently considerable interest in the determination of heavy metals in foods. It is necessary to study the migration of trace elements and to monitor the highly toxic microcomponent content at all stages of the ecological chain (soils, waters, biological systems) because there are immediate sources of heavy metals that reach the human organism (Kubrakova et al., 1994). It is known that some living organisms possess the ability to take in and accumulate certain elements in their structures, especially metals, at high concentrations. The presence of trace metals is an important factor as far as the quality of edible oil is concerned. The presence of heavy metals in edible oils is due to both endogenous factors, connected with the plant metabolism, and hexogenous factors due to contamination during the agronomic techniques of production and the collection of olives and seeds during the oil extraction and treatment processes, as well as systems and materials of packaging and storage (Coco et al., 2003; Dantas et al., 2003). The presence of metals in vegetable oils depends on many factors: they might originate from the soil, fertilizers, or presence in the industry or highways near the plantations, and be incorporated into the oil (La Pera et al.2002a). Sample preparation is a critical step in the analytical procedure for the determination of heavy metals in vegetable oils; classical methods usually employed are wet digestion, dry ashing, acid extraction, closed vessel and focused open-vessel microwave dissolution and dilution (Allen et al., 1998; Garrido et al., 1994). The determination of these metals in the vegetable oils requires specific analytical procedures such as emission and atomic absorption spectrophotometric techniques as well as electroanalytical techniques. (Hendrikse et al.,1991; Coco et al., 2003; Buldinia et al., 1997; Zeiner et al., 2005; Cindric et al., 2007).
Trace levels of metal ions (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn) are known to have adverse effect on the oxidative stability of edible oils. Transition metals such as copper and iron catalyze the decomposition of hydroperoxides and lead to more rapid formation of undesirable substances. Taking into account the metabolic role of some toxic metals, the development of fast and accurate analytical methods for trace element determination in edible vegetable oils is important from the viewpoint of both production quality control and food analysis. The content of metals and their chemical forms in edible oils depend on several factors. The metals might originate from the soil and fertilizers and be intimately incorporated into the oil. They might be introduced during the production process (by processing actions such as bleaching, hardening, refining and deodorization) or by contamination from the metal processing equipment and thus be suspended in the oil (Leonardis, Macciola, & Felice, 2000).In this paper we report an investigation on the feasibility of the direct extraction of toxic metals from vegetable oils using a dilute nitric acid solution before ICP-AES. The application of a direct spectrometric technique, particularly ICP-AES, is the best way to effect such a difficult analysis. These methods suffer disadvantages such as the possible loss of volatile metal species during ashing, contamination in the course of the digestion or chelation process, or non quantitative recoveries especially when numerous extraction steps are involved (Karadjova et al., 1998).

2. MATERIALS AND METHODS
2.1. Materials and Containers
All reagents and standard stock solutions used were from Merck. The concentrated nitric acid (HNO3) was pure, specific for trace analysis, and was diluted to 10 % (v/v) concentration with deionized water. All containers, including test tubes with stoppers, were in polypropylene and were cleaned with 5% (v/v) hydrochloric acid and the deionized water. The blank consisted of the 10% dilute nitric acid and deionized water.
2.2. Analysis
In this study, 17 samples of edible vegetable oils, corresponding to six different species, were used for their metal content. The oil samples were taken from some food supply markets in Turkey. Oil samples include soybean-, hazelnut-, almond-, natural olive-, riviera olive-, virgin olive-, olive (frying)-, sunflower- and corn- oil. Metal ion concentrations were determined as three replicates by Varian Vista ICP-AES. A calibration curve was obtained to see the linear relationship between absorbance and metal concentration in the concentration range being used .
2.3. Preparation of standards
The first standard stock solutions had a 1.0 mg/L concentration of each metal and these were used for the preparation of aqueous standard solutions after appropriate dilution with 10 % nitric acid. The concentration ranges of the working solutions were
0.001- 0.1 ppm for all metals. The procedure of the spiked standard preparation was the following: 1 ml of 10% nitric acid containing different concentrations of metal (10-50 ppb) was added to
1g of oil samples. The extraction was performed as described for the preparation of sample section.
2.4. Quality control
To assure the accuracy of the data reported, recovery experiments were performed. A certain amount of each element of interest depending on its expected concentration in the sample was added prior to the mineralization of oil samples. The experiments were performed in triplicate. To avoid contamination of the specimens, all steps in the sample preparation procedure were carried out in a laboratory equipped for trace element analysis. Reagent blanks were prepared and measured in the same way as the samples.

RESULTS AND DISCUSSION
The most commonly used techniques for the determination of metals in oil samples are ICP- AES. Because edible vegetable oil or fat standards for inorganic species do not exist, the detection of copper, iron, manganese, cobalt, chromium, lead, cadmium, nickel and zinc metals have been determined by ICP-AES technique. They were extracted by treating commercial edible oils with diluted nitric acid. Results are presented as the mean of the mean values of each oil and standard deviations were calculated for each oil and are based on measurements in triplicate.
In Table 1 the average quantities of metal (ppb) recovered in two trials with regards to the additional standards are given for the experimental section. The accuracy of the results, estimated in a percent average of the standard addition recoveries, was higher than 95% for all metal ions. When the concentration of metal ion was very low, the results obtained were influenced by noise and instrumental interference.
Table 1Averages of the standard addition recoveries obtained by two independent determinations



for cadmium, copper and zinc, no legislation currently exists. According to the results of Dugo et al.(2004), maize oils presented the highest mean concentration of Cd (4.90 1.0 µg/kg) and rice oils the lowest (0.71 0.25 µg/kg). Lead was also present in low concentrations, nut oils showed the highest mean value (55.61 9.05 µg/kg) and rice oil the lowest (8.60 2.25 µg/kg). FAO/WHO fixed an allowable daily intake of cadmium (II) at 7 µg/kg od body weight (Crosby, 1977). Zinc (II) is an essential metal for the human body in minimal amounts, while it is dangerous in higher quantities and its presence in the soil reduces cadmium (II)absorption by the plant (Choudhary et al.,1995). Lo Coco et al. (2003) determined 25.5-68.3 ng/g and 26.7-65.3 ng/g Zn (II) in different commercial samples of olive oils by using dPSA and ICP-AES, respectively.
Table 2
Average of metal contents (mg/kg oil) obtained from every oil sample

The reproducibility obtained with acid extractions of oil samples was good and the results show that with this method it was possible to determine metals in edible vegetable oils with a precision estimated to below 1%. Acid extractions from the same oil sample at different times demonstrated that incubation in a shaking water bath for 2 h was sufficient to recover all the metalions present in the oil samples. The analysis of the blanks demonstrated that there was no contamination of metal ions by the reagents or polypropylene containers. It is evident, especially for lead, that when the concentration was very low the results obtained were substantially influenced by noise and instrumental interference.
Lead is a naturally occurring element and is a common industrial metal that has become widespread in air, water, soil, and food. Lead contamination varies and manifests itself in other ways than in green plants. Lead has severe health effects even at relatively low levels in the body and can cross the placenta and damage developing fetal nervous systems (Yu et al., 2001). Lead and cadmium cause both acute and chronic poisoning, adverse effects on the kidney, liver, heart, vascular and immune systems (Heyes, 1997). Some micronutrients such as copper and zinc, are essential for plant growth and human nutrition at low doses but may also be toxic for humans, animals and plants at high doses. Copper and zinc are required in our diet because they exhibit a wide range of biological functions such as components of enzymatic and redox systems (McLaughlinet al., 1999). Environmental pollution due to copper arises from industrial and agricultural emissions. It is found in soil and water as a by-product from metal finishing in the processing industry and agricultural sources such as fertilizers and fungicidies (Namasivayam, & Senthilkumar, 1999). Chromium is a naturally occurring element found in rocks, plants, soil, and in volcanic dust and gases. Human are exposed when eating food, drinking water, and inhaling air that may contain chromium. Excessive amounts of Cr may be involved in the pathogenesis of some diseases such as lung and gastrointestinal cancers (Donais et al., 1999;Kubrakova et al., 1994; Vique et al., 1997). Cadmium is known as a principal toxic element, since it inhibits many life processes (Vetter, 1993; Vetter, 1994; Singh et al., 1998). It can be taken up directly from water, and to some extent from air and via food, and it has a tendency to accumulate in both plants and animals.
Table 3
Average of the metal contents (mg/kg oil) obtained from every oil sample

Table 4
Average of the metal contents (mg/kg oil) obtained from every oil sample





IBAÑEZ JESUS
CRF
FUENTE: http://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/514/516

Trace metals in populations of Marphysa sanguinea

Trace metals in populations of Marphysa sanguinea


(Montagu, 1813) from Sado estuary: effect of body size on accumulationsUMMarY: concentrations of Fe, Zn, cu, Pb and cd were measured in four surface sediments, whole worm tissues and faeces collected along Águas de Moura channel in sado estuary. six wet-weight worm classes were used to analyze the influence of weight. the metal concentration in colonized sediments is high for Fe and cu, moderate for Pb and Zn, and low for cd. the analyses of whole worm tissues show that Zn, cd and cu are accumulated. considering the elevated sediment concentrations to which this species is exposed, the high levels of Zn and cu suggest sequestration and cu adaptation. However, the low Fe concentration indicates that this metal is not readily available. the similar Pb behaviour also suggests low availability or Fe interference. the high correlation in the sediment between Pb and Fe reinforces this suggestion. the results obtained show that Pb, Zn and Fe are the most important metals in the different weight classes. the overall results of this study show: (1) that this worm is able to adapt physiologically to elevated levels of metals; and (2) that the weight of the worms needs to be taken into account in environmental management programmes.
IntroDUctIonestuaries are areas of high productivity, crucial in the life history of many fish, invertebrates and birds. the sustainability of estuarine biodiversity is vitalto the ecological health of coastal regions. estuaries also rank among the most anthropogenic ecosystems on earth and are subjected to intensive environmental pressures. In particular, sediments can act as a sink and cycling centre for metallic contaminants, and therefore can be a potential source for metal bioac- cumulation by marine deposit and suspension feed- ing invertebrates, which may have adverse effects at complex levels of biological organization (lee et al., 2000). one major concern with the chemicals associated with sediments is that many commercial species, and their preys, are particularly vulnerable to toxic compounds given their close contact with sediment particles and interstitial water for extended periods of their life cycle. this provides a pathway for these chemicals to be transferred directly from sediments to organisms (Wright and Mason, 1999). Determining the ecological significance of trace metal contamination in sedimentary environments is difficult. Uptake and effects of sediment-associated contaminants are largely a function of bioavailabil- ity, which is strongly influenced by a set of physical, chemical and biological factors in the sediments. While most metals are naturally present in the aquatic environment, it is their presence at elevated concentrations that is a potential threat to aquatic life (rainbow et al., 1990).It is important, therefore, to determine whether ecologically keystone species of our estuaries are at risk due to toxic contaminants or whether different local populations are tolerant to bioavailable levels of toxicants that are potentially lethal elsewhere. In Sado estuary M. sanguinea is a herbivorous and sur- face detritivorous feeder with moderate or discreet surface mobility. It inhabits the intertidal mudflats of estuaries and coastal zones. It is broadly distributed in sado estuary (Portugal) wetlands, where it lives in deep borrows, and is particularly abundant in oldoyster production areas. It is among the key species in sado estuary, and functions as a major constitu- ent of the benthic biomass of mudflats as well as an important food item for crustaceans, fishes and waders (castro, 1993). M. sanguinea is also com- monly used as fresh bait and harvesting it is one of the most important socio-economic resources for local fishermen.the purpose of this study is to evaluate the influ- ence of weight on the bioaccumulation of sediment- bound Fe, Zn, cu, Pb and cd in M. sanguinea in Águas de Moura channel, located in central sado estuary.
MaterIal anD MetHoDsStudy areasado estuary is located on the southwest coast of Portugal (37º25'-38º40'n, 0.07º40'-0.08º5o'W) (Fig. 1). It is an area of 180 km2, of which 62% is wetlands with a complex morphology. It is a mes- otidal coastal-plain lagoon-type estuary well mixed for normal river flow conditions, although high dis- charge in some winter months may cause moderate stratification in parts of the estuary (caeiro et al.,2005a; Ferreira et al., 2003). Most of the estuary is classified as a nature reserve and it is also a ramsar site due to the high biodiversity values. sado estuary is subjected to intensive land use practices, which play an important role in the local and national economy.
Fig. 1. – sado estuary, south Portugal. letters and points indicate sampling sites: Z, Zambujal; a, arrábidas; G, Garças; P, Pinheiro

Table 1. – number of worms analyzed in sampling stations and in the 6 wet-weight classes (g)
the study site located in Águas de Moura chan- nel is quite shallow. It is intertidal with the largest salt marsh area of the estuary, where Marphysa sanguinea reaches high densities. It is also a high sa- linity area where hydrodynamic properties, nutrient dynamics and primary productivity patterns are very different from those in the adjacent areas (cabeçadas et al., 2000). Four sampling stations (Zambujal (Z), arrábidas (a), Garças (G) and Pinheiro (P)) were chosen according to the density of M. sanguinea, and avoiding intense harvesting sites.
Methodology
sediment and worms were collected at low tide in april 2002 at each station. sediment tripli- cate samples were collected with a previously acid washed cylindrical plastic tube (15 cm in diameter) placed directly on the gallery of the polychaete to a depth of 30 cm, immediately sealed then transported to the laboratory and stored at –80ºc before chemi- cal analysis. In the study area, the first 15 cm of the sediment samples were light-coloured and no H2s smell was noticed during collection, which indicates an oxygenated top sediment layer. the collected worms were carefully washed with seawater from the collection site to eliminate sediment and other particles. In the laboratory, only the top fraction (5 cm) of sediment was analyzed, and collected worms were divided into six weight classes (table 1) and placed in polyethylene covered tanks that had been previously acid washed. the bottom of the tanks was continuously aerated and filled with a fine layer of treated calcined sand and 5 m3 of filtered water. the sand was previously screened through a 0.5 mm sieve in order to remove algae and any associated macrofauna. afterwards, it was sterilized in an auto- clave (during 20 minutes at 1 atm) and then placed in a stove at 90ºc during 24 h. the worms were kept starved for 48 h in order to purge the gut contents and adhering sediment prior to metal analysis (Diéz et al., 2000). Water from sado estuary was changed daily, damaged individuals were removed and the faeces in each of the weight classes were collected for subsequent analysis. trace metals were determined by atomic absorption spectrophotometry (aas) ac- cording to the procedure developed by rantala and loring (1977) for sediments and faeces, and Vale and cortesão (1988) for tissues, using the multiple standard addition method.analyses of Pb and cd in all samples and cu in tissues were carried out with a Perkin elmer aanalyst100 atomic absorption spectrophotometer equipped with a deuterium background corrector. Pyrolytically coated furnace tubes were used. the flame technique (a conventional air/acetylene flame - Perkin elmer aanalyst 100 equipped with background corrector) was used to analyze al, Fe and Zn in all samples and cu in sediments and faeces. al was only determined in sediment in order to remove the grain size effect associated with the natural inputs of the sedimenta- tion process, which evidence the level of anthropo- genic contribution (loring, 1991; langston, et al.,1999; Villares, et al., 2003). Procedural blanks were prepared and analyzed with the samples. Interna- tional certified standards for sediments and faeces (Mess-1, Mess-2, Bcss-1 and 1646-a) and for tissues (DorM-1, DorM-2 and nBs-bovine liver) were used to control the accuracy of the procedures (tables 2 and 3).statistical analysis was performed using sPss (Statistical Package for the Social Sciences) soft- ware (Version 14; sPss Inc, chicago, Il). the relationships between metal concentrations and al content in sediment were examined using spear- man's rank correlation. concentrations in sampling sites (sediment and worm tissues) and metal con- centration in each wet-weight class were compared using the Kruskal-Wallis one-way anoVa fol- lowed by non-parametric multiple comparisons(lsD). a significance level of α = 0.05 was chosen. the effect of body weight on bioaccumulationwas first evaluated by multidimensional scaling.
the minimum number of dimensions necessary toreproduce the similarities/disparities between the wet-weight classes was evaluated according to the scree-plot criterion and by graphic analysis of the proximities transformed vs. distances. this analy- sis was refined by a non-hierarchical cluster analy- sis (K-means). the r-squared method was used as the decision criterion for the number of clusters to retain. the more important metals in the retained clusters were identified by the distance between the centre of the clusters and a statistical cluster F- anova analysis. the error probabilities associated with cluster results was evaluated with a two-wadiscriminant analysis (Wilks' lambda (∧) and theMahalanobis distance (DM2)). the variance-cov-ariance normality and homogeneity of each group were tested with shapiro-Wilk and M-Box tests re- spectively. a collinearity analysis was carried out in order to reinforce theresults obtained.
resUltsMetals in sedimentthe relationships between concentrations of pairs of metals in sediments (table 4) show that only Fe and Pb concentrations are significantly (p<0.01)>
Fig. 2. – Metal concentrations ([al], [Fe] % and [Zn], [cu], [cd] µg g-1 dry weight ± s.d.) in the top 5 cm of sediment (n =3 samplings at each station) in Águas de Moura channel. s.d.- standard deviation. (a) normalized metal concentrations to al; (B) non-normalized metal concentrations. sediment quality guidelines for Florida coastal waters (MacDonald et al., 1996): _ _ _ t.e.l. (threshold effects level); P.e.l. (probable effects level)
Fig. 3. – relationships between average concentrations of Fe, Zn, cu. Pb and cd (µg g-1 dry weight) in sediment (n =12), worm tissues and faeces (Z =780 w.; a =680 w.; G =660 w.; P =660 w.) in sampling stations. w - worms cu, and cd in sites near the channel mouth. ana- lyzed metals can be characterized into two groups with different behaviours: Fe and Pb are excreted and Zn, cu and cd are accumulated. In spite of the high excretion of Fe and Pb, these metals are still highly concentrated in tissues (table 5). Zn, cu and cd are definitely accumulated. However, the cu behaviour suggests that there is a degree of adaptation, which and it is not surprising in view of the very high concentrations found in sediments to which this population is exposed. Greater dif- ferences between sampling sites occurred in station Garças (G) where Fe concentrations in sediments were low (Z =5%; a =4.9%; G =2.7%; P =4%)(Fig. 4). Zn and cd have the largest bioaccumula- tion factor (BaF - ratio between metal concentra- tion in tissue and sediment [Met]/[Mes]) in site G p<0.05) i ="3e-2;" rsq ="0.99).">1 for all metals). cluster 8 (P2, P3 and P4) also shows positive values≤1, as well as clusters 6 (G1), 10 (G4) and 1 (Z1). the F-anoVa also shows that Zn (F =23.9) and cd(F =21) are the metals with most influence on clus- ter discrimination. However, F tests should be used only for descriptive purposes because clusters have been chosen to maximize differences among classes in different clusters. For this reason the error prob- abilities associated with these results were evaluated through a two discriminant analysis, and the exist- ence of collinear relationships was tested. all metals show normal distributions (p>0.05) for all classes, which is also confirmed by the variance-covariance homogeneity (table 7). In the first method (Wilks' lambda), although the results show that only Pb has significantly discriminant power (p =0.001), the step- wise analysis extracted two functions retaining Fe

Table 5. – Metal concentration (µg g-1 d.w.) averaged over the whole populations and standard deviation (±sd) in Marphysa sanguinea (Ms) compared with metal concentrations in arenicola marina (aM); nereis diversicolor (nD); nereis virens (nV); heteromastus filiformes (HF) and eurythoe complanata (ec) in several polluted estuary environments. the 95% confidence intervals are shown in brackets; ♦ (% value); nd, not determined.

Fig. 4. – Bioaccumulation factor (ratio between metal concentra- tion in tissue [Me]t and sediment [Me]s- BaF) in the M. sanguinea population in Águas de Moura channel.

Table 6. – Wet-weight class classification for the method K-means with K = 11 clusters and one-way anoVa for each metal. the weight class corresponding to the clusters is shown in brackets.

Fig. 5. – averaged metal concentrations (%±s.d. (Fe) and µg g-1 d.w.±s.d. (Pb, Zn, cu and cd) in each wet-weight class and in whole worm tissues (a) and faeces (B) along Águas de Moura channel. s.d. - standard deviation; c1 [0.5-1]g; c2 [1-1.5]g; c3[1.5-2]g; c4[2-2.5]g; c5[2.5-3]g; c6[3-3.5]g wet-weight; nc1 =234; nc2 =550; nc3 =731; nc4 =650; nc5 =407; nc6 =208
as statistically significant, although the discriminant power is questionable (p =0.06). Function 1, defined essentially by Pb, explains 76% of the variability and discriminates all the wet-weight classes signifi-cantly (∧ =0.20; χ2(10) =30.57; p =0.001). However,the second retained function, defined by Fe, does not discriminate all the classes significantly (∧ =0.61; χ2(4) =9.44; p =0.05). In order to assure that the se- lected metals (Pb and Fe) are in fact important, a new analysis was carried out using DM2. In this method

only Pb was selected and the function extracted discriminates all the weight classes significantly (∧=0.353; χ2(5) =20.9; p =0.001). table 8 presents theclassification statistics of wet-weight classes withthe respective classification functions generated by these two analyses. In the first one, 45.8% of the classes were correctly classified, against 33.3% in the second one. comparing the two methods, we can see that Pb without the influence of Fe, in spite of its weak performance, classified the two small classes very well (c1 and c2 - 75% for both). When the two metals are associated they perform better for the largest classes (c4 to c6). the smallest class (c1) was always well classified with the two methods

Table 8. – original classification results used in the discriminant analysis with the two methods: Wilks' lambda (∧) and the Mahalanobis distance. WWc, wet-weight classes.

the results obtained with the Kruskal-Wallis analy- sis (table 9) confirm the results achieved for Pb and also show that Zn is an important element in weight class differentiation.

Table 9. – Kruskal Wallis test between metal concentrations in each wet-weight class; Grouping Variable: classes.

DIscUssIon
Metals in sediment
Metal concentrations in sediment were gener- ally higher at the entrance of the channel as has been previously described by cortesão (2003). the high correlations obtained between Fe/al and Pb/al suggest that Fe and Pb are closely associated with aluminosilicates. Moreover, inside this fine fraction the close relationship between Fe and Pb shows that Pb is mainly associated with Fe oxyhydroxides (FeooH), which also have a great capacity to re- tain trace metals like cd and cu. In fact the larg- est differences between stations occurred where Feconcentrations were low. the [Me]/al ratio for Zn and cd increased from upstream to downstreamalong Águas de Moura channel, which reflects the influence of anthropogenic sources. Higher levels of cu, Zn and cd occurred at downstream stations (G and P), evidencing the importance of sado river as a metal source for the estuary (cortesão, 2003; caeiro et al., 2005b).considering the potential toxicity of sediments in the study area, reference values given by MacDon- ald et al. (1996) suggest that there is a physiologi- cal cu-adaptation in Marphysa sanguinea. In fact all analyzed specimens were in apparently healthy condition considering animal activity and the game- togenic development in most of them. High cu-lev- els (200-2000 µg g-1 dry weight) in the sediment are known to be toxic to aquatic animals including meio- and macrofauna (Morrisey et al., 1996; austen and somerfield, 1997).
Metals in worm tissues
comparing the mean metal-concentration in the M. sanguinea population in the studied channel with the concentrations in other polychaete species from other estuarine environments, the present values can be considered relatively high for Fe, Zn, cu and Pb, and moderate for cd. the results obtained for Fe and Pb could be explained by low availability. Most of the Fe is in an unavailable form, as Fe-hydroxides or sulphides, but it seems that a substantial amount is still available to be absorbed (table 5), which is sug- gested by the high Fe excretion superior to sediment levels (1.4±0.09) in station G. the high Pb excre- tions, superior to Pb sediment levels in all stations (1.3±0.2), suggest that although there is very low availability, there is some accumulation and even- tually other sources of Pb intake. the significant correlations between Fe and Pb also suggest that the Fe concentration in sediment may influence the availability of Pb by influencing the physicochemi- cal form of sediment-bound Pb. luoma and Bryan (1978) found that Fe influences Pb availability in Scrobicularia plana. In addition, the significant dif- ferences that occurred between station G, where Fe concentrations in sediments were low, and the other stations, suggest that Fe influences the availability of the other metals.It is well known that Zn, cu and cd are accumu- lated in hediste (syn. nereis) diversicolor and other annelids in agreement with the metal concentrations in the sediment (Berthet et al., 2003; nipper and carr,2003). the degree to which these metals accumulate in M. sanguinea varied considerably. Zn showed the highest accumulation. at all sampling stations, Zn concentrations in M. sanguinea exceeded the con- centrations in the sediments (5.8±1.4), with an aver- age BaF= 6±1.2, which suggests sequestration or other uptake sources. For example, in station G the tissue concentration reached up to seven times the sediment values. Zn concentrations found here (560 to 1502 µg Zn g-1) were much higher in comparison to those presented in the cited literature. In contrast, cd levels in M. sanguinea approaches those in the sediments at all surveyed sites except at station G (1.6±0.3), with an average BaF of 1.3±0.5. the low excretion obviously suggests accumulation. cd val- ues obtained in this work are comparable with those of n. diversicolor in table 5. In light of the very high concentrations in sediments referred to previ- ously and the accumulation under certain limits, the results for cu show the existence of an obvious adaptation. In fact, the values obtained in this study (102 to 320 µg cu g-1) are relatively high in com- parison with those presented in table 5. these very high cu levels, especially in sediments, suggest that there is some kind of regulation. However, bioac- cumulation is the result of a complex interactivity between sediment characteristics and animal physi- ology and therefore factors such as animal size need to be considered.
Influence of body weight on metal accumulation and excretion
the bioaccumulation results obtained for Mar- physa populations along Águas de Moura channel previously discussed, indicate that Zn, cu and cd bioaccumulation does not seem to be supported when body weight is considered. In fact, cu and cd concentrations are not higher in bigger specimens while Pb, Zn and Fe concentrations tend to have a negative relationship with body size. Is there size- dependence for all metals including cu and cd? the observed decline in some metal body burdens in the bigger worms could be a result of growth-dilution. In fact, this polychaete is considerably large and has a short life cycle (1.4 years) (castro, 1993), and it is very probable that the metal concentration in tis- sues is influenced by its fast growth. Previous works on growth rates of polychaetes, especially in n. diversicolor (Fidalgo e costa 2001), nereis virens (olive et al., 1991), arenicola marina (De Wilde and Berghuis, 1979; Farke and Berghuis, 1979) and M. sanguinea (castro, 1993) revealed a significantlyhigher rate in the first months. according to ahrens et al. (2001), the prolonged resident time of ingested food in juveniles of nereis succinea, allied with their digestive chemistry, facilitates desorption and subse- quently the increased uptake of sediment-bound con- taminants. However, assuming that most metals are sequestered in hard structures and epithelial surfaces (such as jaws, cuticle and the gut lining) then bound- metals would increase at a slower rate than weight (which scales with an exponent of x3) compared to surfaces (x2). this could explain why bigger worms have relatively less metals in their tissues, i.e. it is mostly in hard parts, which are associated with total surface area. the very high Zn levels provide evi- dence of sequestration within the animals. Bryan and Gibbs (1979) proposed that the jaws might serve as a metal–sink, sequestering toxic levels of Zn absorbed from the sediment away from the living tissue (1.5% of the dry weight and 70-80% of the total metal con- tent in nereis jaws). they also demonstrated that Zn concentrations fall very significantly with increasing size, and significant concentrations of other metals, including Fe, are also present. Further observations (lichtenegger et al., 2003, Broomell et al., 2006,2007) demonstrated that Zn levels in nereis jaws were high, regardless of the environmental context, which led to the hypothesis that metals might con- tribute to their mechanical properties.a complex jaw apparatus consisting of ventral mandibles and dorsal maxillae is characteristic of polychaetes of the eunicidae family. the high levels of Zn and Pb in the smallest wet-weight classes of M. sanguinea can be related to the carbonate nature of the jaws (structures composed of calcium carbonate and/or scleroproteins (Paxton, 2006; Voss-Foucart et al., 1973).the results obtained show that Fe influences large weight classes. the relatively high level of Fe in small worms possibly reflects the deposition of Fe-oxides on their exposed surfaces. the source of this Fe may be the overlying water or, more prob- ably, the interstitial water found in the reduced sub- surface sediments into which the irrigated burrows penetrate. the high Fe levels in the youngest M. sanguinea worms could also be the result of meta- bolic needs in view of the essential role of Fe in, for example, Marphysa haemoglobin. the absence of a clear relationship between cu and cd concentrations and body weight can be explained by physiological factors like reproductive maturation (Howard and Brown, 1983), copper regulation capacity (Méndez and Páez-osuna, 1998), and specific metabolic needs. However, we found size-dependence for all the metals, including cu and cd (even though the r2 are lower).In conclusion, the results obtained suggest: (1) Fe has a strong influence on metal availability, mainly for Pb; (2) M. sanguinea is adapted to the high cu and Fe levels in Àguas de Moura channel; (3) the significant differences in Zn and Pb concentrations between the small weight classes (c1 and c2) and larger ones (c3 to c6) indicate that it is important to consider the worm's weight in environmental moni- toring programmes. However, further investiga- tions addressing other ecotoxicological aspects (e.g. metabolic routes involved in metal accumulation and excretion) are encouraged in order to confirm this suggestion and to reinforce the relevance of this species to be included in environmental monitoring programmes in sado estuary.


IBAÑEZ JESUS
EES