sábado, 13 de febrero de 2010

SEMICONDUCTORES "INTRÍNSECOS"

Los materiales semiconductores, según su pureza, se clasifican de la siguiente forma:
 
  1. Intrínsecos
  2. Extrínsecos
  Se dice que un semiconductor es "intrínseco" cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción. Cuando se eleva la temperatura de la red cristalina de un elemento semiconductor intrínseco, algunos de los enlaces covalentes se rompen y varios electrones pertenecientes a la banda de valencia se liberan de la atracción que ejerce el núcleo del átomo sobre los mismos. Esos electrones libres saltan a la banda de conducción y allí funcionan como "electrones de conducción", pudiéndose desplazar libremente de un átomo a otro dentro de la propia estructura cristalina, siempre que el elemento semiconductor se estimule con el paso de una corriente eléctrica.
Como se puede observar en la ilustración, en el caso de los semiconductores el espacio correspondiente a la banda prohibida es mucho más estrecho en comparación con los materiales aislantes. La energía de salto de banda (Eg) requerida por los electrones para saltar de la banda de valencia a la de conducción es de 1 eV aproximadamente. En los semiconductores de silicio (Si), la energía de salto de banda requerida por los electrones es de 1,21 eV, mientras que en los de germanio (Ge) es de 0,785 eV.




Estructura cristalina de un semiconductor intrínseco, compuesta solamente por átomos de silicio (Si) que forman una celosía. Como se puede observar en la ilustración, los átomos de silicio (que sólo poseen cuatro electrones en la última órbita o banda de valencia), se unen formando enlaces covalente para completar ocho electrones y crear así un cuerpo sólido semiconductor. En esas condiciones el cristal de silicio se comportará igual que si fuera un cuerpo aislante.
 
 

SEMICONDUCTORES "EXTRÍNSECOS"

 
Cuando a la estructura molecular cristalina del silicio o del germanio se le introduce cierta alteración, esos elementos semiconductores permiten el paso de la corriente eléctrica por su cuerpo en una sola dirección. Para hacer posible, la estructura molecular del semiconductor se dopa mezclando los átomos de silicio o de germanio con pequeñas cantidades de átomos de otros elementos o "impurezas".

Generalmente los átomos de las "impurezas" corresponden también a elementos semiconductores que, en lugar de cuatro, poseen tres electrones en su última órbita [como el galio (Ga) o el indio (In)], o que poseen cinco electrones también en su última órbita [como el antimonio (Sb) o el arsénico (As)]. Una vez dopados, el silicio o el germanio se convierten en semiconductores "extrínsecos" y serán capaces de conducir la corriente eléctrica.

En la actualidad el elemento más utilizado para fabricar semiconductores para el uso de la industria electrónica es el cristal de silicio (Si) por ser un componente relativamente barato de obtener. La materia prima empleada para fabricar cristales semiconductores de silicio es la arena, uno de los materiales más abundantes en la naturaleza. En su forma industrial primaria el cristal de silicio tiene la forma de una oblea de muy poco grosor (entre 0,20 y 0,25 mm aproximadamente), pulida como un espejo.


A la izquierda se muestra la ilustración de una oblea (wafer) o cristal semiconductor de. silicio pulida con brillo de espejo, destinada a la fabricación de transistores y circuitos. integrados. A la derecha aparece la cuarta parte de la oblea conteniendo cientos de. minúsculos dados o "chips", que se pueden obtener de cada una. Esos chips son los. que después de pasar por un proceso tecnológico apropiado se convertirán en. transistores o circuitos integrados. Una vez que los chips se han convertido en. transistores o circuitos integrados serán desprendidos de la oblea y colocados dentro. de una cápsula protectora con sus correspondientes conectores externos.

El segundo elemento también utilizado como semiconductor, pero en menor proporción que el silicio, es el cristal de germanio (Ge).
Durante mucho tiempo se empleó también el selenio (S) para fabricar diodos semiconductores en forma de placas rectangulares, que combinadas y montadas en una especie de eje se empleaban para rectificar la corriente alterna y convertirla en directa. Hoy en día, además del silicio y el germanio, se emplean también combinaciones de otros elementos semiconductores presentes en la Tabla Periódica.

Placa individual de 2 x 2 cm de área, correspondiente a un antiguo diodo de selenio.
Entre esas combinaciones se encuentra la formada por el galio (Ga) y el arsénico (As) utilizada para obtener arseniuro de galio (GaAs), material destinado a la fabricación de diodos láser empleados como dispositivos de lectura en CDs de audio.
 






Lente (señalada con la flecha) detrás de la cual se encuentra instalado un diodo láser de arseniuro de galio (GaAs) empleado para leer datos de texto, presentaciones multimedia o música grabada en un CD. En esta ilustración el. CD se ha sustituido por un disco similar transparente de plástico común.
En el caso del silicio (Si) y el germanio (Ge) cuando se encuentran en estado puro, es decir, como elementos intrínsecos, los electrones de su última órbita tienden a unirse formando "enlaces covalentes", para adoptar una estructura cristalina. Los átomos de cualquier elemento, independientemente de la cantidad de electrones que contengan en su última órbita, tratan siempre de completarla con un máximo de ocho, ya sea donándolos o aceptándolos, según el número de valencia que le corresponda a cada átomo en específico.

Con respecto a los elementos semiconductores, que poseen sólo cuatro electrones en su última órbita, sus átomos tienden a agruparse formando enlaces covalentes, compartiendo entre sí los cuatro electrones que cada uno posee, según la tendencia de completar ocho en su órbita externa. Al agruparse de esa forma para crear un cuerpo sólido, los átomos del elemento semiconductor adquieren una estructura cristalina, semejante a una celosía. En su estado puro, como ya se mencionó anteriormente, esa estructura no conduce la electricidad, por lo que esos cuerpos semiconductores se comportan como aislantes.

Hernandez Caballero Indiana M. CI: 15.242.745
Asignacion: EES
Fuente: http://www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_5.htm

No hay comentarios:

Publicar un comentario