sábado, 13 de febrero de 2010

MATERIALES SEMICONDUCTORES

Los primeros semiconductores utilizados para fines técnicos fueron pequeños detectores diodos empleados a principios del siglo 20 en los primitivos radiorreceptores, que se conocían como "de galena". Ese nombre lo tomó el radiorreceptor de la pequeña piedra de galena o sulfuro de plomo (PbS) que hacía la función de diodo y que tenían instalado para sintonizar las emisoras de radio. La sintonización se obtenía moviendo una aguja que tenía dispuesta sobre la superficie de la piedra. Aunque con la galena era posible seleccionar y escuchar estaciones de radio con poca calidad auditiva, en realidad nadie conocía que misterio encerraba esa piedra para que pudiera captarlas.

En 1940 Russell Ohl, investigador de los Laboratorios Bell, descubrió que si a ciertos cristales se le añadía una pequeña cantidad de impurezas su conductividad eléctrica variaba cuando el material se exponía a una fuente de luz. Ese descubrimiento condujo al desarrollo de las celdas fotoeléctricas o solares. Posteriormente, en 1947 William Shockley, investigador también de los Laboratorios Bell, Walter Brattain y John Barden, desarrollaron el primer dispositivo semiconductor de germanio (Ge), al que denominaron "transistor" y que se convertiría en la base del desarrollo de la electrónica moderna.

Los "semiconductores" como el silicio (Si), el germanio (Ge) y el selenio (Se), por ejemplo, constituyen elementos que poseen características intermedias entre los cuerpos conductores y los aislantes, por lo que no se consideran ni una cosa, ni la otra. Sin embargo, bajo determinadas condiciones esos mismos elementos permiten la circulación de la corriente eléctrica en un sentido, pero no en el sentido contrario. Esa propiedad se utiliza para rectificar corriente alterna, detectar señales de radio, amplificar señales de corriente eléctrica, funcionar como interruptores o compuertas utilizadas en electrónica digital, etc.






Lugar que ocupan en la Tabla Periódica los trece elementos con. características de semiconductores, identificados con su correspondiente. número atómico y grupo al que  pertenecen. Los  que  aparecen  con  fondo.
gris corresponden a "metales", los de fondo verde a "metaloides" y los de. fondo azul a "no metales".
Esos elementos semiconductores que aparecen dispuestos en la Tabla Periódica constituyen la materia prima principal, en especial el silicio (Si), para fabricar diodos detectores y rectificadores de corriente, transistores, circuitos integrados y microprocesadores.

Los átomos de los elementos semiconductores pueden poseer dos, tres, cuatro o cinco electrones en su última órbita, de acuerdo con el elemento específico al que pertenecen. No obstante, los elementos más utilizados por la industria electrónica, como el silicio (Si) y el germanio (Ge), poseen solamente cuatro electrones en su última órbita. En este caso, el equilibrio eléctrico que proporciona la estructura molecular cristalina característica de esos átomos en estado puro no les permite ceder, ni captar electrones. Normalmente los átomos de los elementos semiconductores se unen formando enlaces covalentes y no permiten que la corriente eléctrica fluya a través de sus cuerpos cuando se les aplica una diferencia de potencial o corriente eléctrica. En esas condiciones, al no presentar conductividad eléctrica alguna, se comportan de forma similar a un material aislante.

TABLA DE ELEMENTOS SEMICONDUCTORES


Número Atómico Nombre del Elemento Grupo en la Tabla Periódica Categoría Electrones en la última órbita Números de valencia
48 Cd (Cadmio) IIa Metal 2 e- +2
5 B (Boro) IIIa Metaloide 3 e- +3
13 Al (Aluminio) Metal
31 Ga (Galio)
49 In (Indio)
14 Si (Silicio) IVa Metaloide 4 e- +4
32 Ge (Germanio)
15 P (Fósforo) Va No metal 5 e- +3, -3, +5
33 As (Arsénico) Metaloide
51 Sb (Antimonio)
16 S (Azufre) VIa No metal 6 e- +2, -2 +4, +6
34 Se (Selenio)
52 Te (Telurio) Metaloide
 

Incremento de la conductividad en un elemento semiconductor


La mayor o menor conductividad eléctrica que pueden presentar los materiales semiconductores depende en gran medida de su temperatura interna. En el caso de los metales, a medida que la temperatura aumenta, la resistencia al paso de la corriente también aumenta, disminuyendo la conductividad. Todo lo contrario ocurre con los elementos semiconductores, pues mientras su temperatura aumenta, la conductividad también aumenta.

En resumen, la conductividad de un elemento semiconductor se puede variar aplicando uno de los siguientes métodos:

  • Elevación de su temperatura
  • Introducción de impurezas (dopaje) dentro de su estructura cristalina
  • Incrementando la iluminación.
Con relación a este último punto, algunos tipos de semiconductores, como las resistencias dependientes de la luz (LDR – Light-dependant resistors), varían su conductividad de acuerdo con la cantidad de luz que reciben.



Resistencia dependiente de la luz (LDR), conocida también como fotorresistor o célula fotoeléctrica. Posee la característica de disminuir el valor de su resistencia interna cuando la intensidad de luz que incide sobre la superficie de la celda aumenta. Como material o elemento semiconductor utiliza el sulfuro de cadmio (CdS) y su principal aplicación es en el encendido y apagado automático del alumbrado público en las calles de las ciudades, cuando disminuye la luz solar.
En dependencia de cómo varíen los factores de los puntos más arriba expuestos, los materiales semiconductores se comportarán como conductores o como aislantes.



La conductividad eléctrica de los cuerpos materiales (σ) constituye la capacidad que. tienen de conducir la corriente eléctrica. La fórmula matemática para hallar la. conductividad es la siguiente:


Como se puede apreciar en esta fórmula, la conductividad (σ) se obtiene hallando primeramente el resultado de la recíproca de la resistencia (o sea, 1/R) multiplicándolo a continuación por el resultado que se obtiene de dividir la longitud del material (L) entre su área (A). En esa fórmula se puede observar también que la resistencia (R) es inversamente proporcional a (σ), por lo que, a menor resistencia en ohm de un cuerpo, la conductividad resultante será mayor.


 


Hernandez Caballero Indiana M. CI: 15.242.745 Asignacion: EES fuente:http://www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_3.htm

No hay comentarios:

Publicar un comentario